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Warm discharges in cold fresh water. Part 1.
Line plumes in a uniform ambient
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Turbulent buoyant plumes in cold fresh water are analysed, assuming a quadratic
dependence of density on temperature. The model is based on the assumption that
entrainment velocity is proportional to vertical velocity in the plume. Numerical and
asymptotic solutions are obtained for both rising and descending plumes from virtual
sources with all possible combinations of buoyancy, volume and momentum fluxes.
Physical sources can be identified as points on trajectories of plumes from virtual
sources.

The zero-buoyancy condition, at which the plume and the ambient have equal
densities but their temperatures are on opposite sides of the temperature of maximum
density, is of particular importance. If an upwardly buoyant plume rising through
a body of water reaches the surface before passing through its zero-buoyancy level,
it will form a surface gravity current; otherwise, the plume water will return to
the source as a fountain. The height at which zero buoyancy is attained generally
decreases as the source momentum flux increases: greater plume velocity produces
greater entrainment and hence more rapid temperature change. Descending plumes,
if ejected downwards against upward buoyancy, may be classified as strongly or
weakly forced according to whether they reach the zero-buoyancy condition before
being brought to rest. If they do, they continue to descend with favourable buoyancy;
otherwise, they may form an inverted fountain. Once a descending plume has attained
downward buoyancy, it can continue to descend indefinitely, ultimately behaving like
a plume in a fluid with a linear equation of state. In contrast, a rising plume will
eventually come to rest, however large its initial upward buoyancy and momentum
fluxes are.

1. Introduction
Power stations discharge their cooling water at temperatures approximately 10 ◦C

higher than it is taken in (Macqueen 1979). The discharged water is therefore less
dense than the receiving water. With an outfall at the bed of a water body, the
warm water will rise to the surface as a turbulent plume, reducing its temperature
substantially as it entrains cold water from the ambient. The warm water will then
spread horizontally as a surface gravity current, cooling further by entrainment and
possibly by losing heat to the atmosphere: see figure 1. In this scenario, the warm
water has no effect on the ecology at the bed of the water body, and there is no risk
of it recirculating into a power station’s intake situated at the bed.
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Figure 1. Schematic of the usual behaviour of warm water discharged from an outfall at the
bed of a cooler water body.

(a)
Arrested

gravity current

 Descending
plume

(b)

Figure 2. Possible behaviours of warm water discharged from an outfall at the bed of a fresh
water body below the temperature of maximum density: (a) the rising plume loses buoyancy
and forms a fountain; (b) the rising plume remains buoyant but the subsequent gravity current
suffers buoyancy reversal, giving rise to descending plumes.

Now suppose that the receiving water is below the temperature of maximum density,
approximately 4 ◦C in fresh water but decreasing with increasing salinity in brackish
water. Mixing between the warm water from the discharge and the cold receiving
water can then produce water which is denser than either component, the so-called
cabbeling phenomenon (e.g. Foster 1972). This may occur in the rising plume, in
which case the dense water will form a fountain, returning to the bed outside the
rising plume: see figure 2(a). Alternatively, the plume may reach the surface still
positively buoyant, but then the warm water will inevitably become denser than the
ambient water during its subsequent surface spreading: the gravity current will then
be arrested, and a dense plume will descend from its head (where mixing is most
intense) to the bed, as seen in the laboratory experiments of Marmoush, Smith &
Hamblin (1984): see figure 2(b). In either case, water which may be as much as 8 ◦C
warmer than the ambient (in a lake at 0 ◦C) will then spread along the bed as a dense
gravity current, possibly affecting the bed ecology or entering an intake. Evidence for
this was found in Lake Michigan by Hoglund & Spigarelli (1972), who measured a
rise of 5.2 ◦C from a natural ambient temperature of 0.5 ◦C; however, these authors
were principally concerned with the biological implications of the spread of warm
water along the lake bed, and did not attempt to analyse the dynamics. There, the
warm water flow at the bed was considered undesirable; alternatively, if the main
concern is to avoid erosion of the winter ice cover (Gu & Stefan 1993), formation of
a fountain would be considered the most desirable outcome.
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There are thus four possible stages of motion to be analysed: a rising plume, a
surface gravity current, a descending plume, and a gravity current along the bed. The
last of these has no features which are qualitatively different from situations where
cabbeling does not apply. The surface gravity current will be addressed in a future
paper. The remaining stages are the vertical plumes, both rising and descending, which
are the object of study here. We restrict ourselves to two-dimensional geometry: thus
we are modelling a line plume rising from a multiport diffuser, or descending from
the head of a broad (spanwise) gravity current. The latter case includes annular
descending plumes following axisymmetric spreading across the surface from above a
point outfall: these may be modelled as two-dimensional if the plume’s width is small
compared to its radial distance from the outfall. The plumes are also assumed to be
steady, as would be expected of power station cooling water discharges. Thermals
arising from instantaneous releases can be modelled by a similar formalism (Turner
1973), while starting plumes, formed when the source of buoyant fluid is switched on
at some initial time and then maintained, require more complicated modelling (Turner
1962); this might be relevant in understanding the plumes observed by Marmoush
et al. (1984) descending from the head of a lock-release gravity current, but is not
considered here.

We will consider only unstratified ambient conditions: in relation to protecting the
bed ecology, this may be regarded as a ‘worst case’. A lake which freezes over in
winter will typically have inverse thermal stratification, with temperature increasing
from 0 ◦C at the surface to possibly as high as 4 ◦C at the bed (Gu & Stefan 1993).
Consider a discharge at 10 ◦C from a lake bed, with the receiving water either
(i) at a uniform temperature of 0 ◦C, or (ii) inversely stratified. In case (i) the plume’s
buoyancy is lower, and its cooling rate due to entrainment is higher, than in case (ii);
hence the discharge is more likely to experience buoyancy reversal before reaching
the surface in our model than in a real lake. Similarly, a plume descending from the
head of an arrested gravity current will have greater negative buoyancy and greater
impact on the lake bed (in terms of both temperature difference and velocity) in our
unstratified model than in the more realistic situation.

Whereas buoyancy reversal is the main feature of interest in rising plumes, for
descending plumes a notable phenomenon is that entrainment can increase the
(negative) buoyancy. Consider, for instance, a fresh water plume at 7 ◦C, which
is denser than ambient water at 0 ◦C: as the plume descends and mixes with its
surroundings, the density difference will increase until its temperature has dropped to
4 ◦C. This is in contrast to plumes with linear mixing properties, for which entrainment
always reduces the buoyancy.

The plan for the remainder of this paper is as follows. The assumptions used
in modelling plume behaviour are discussed in § 2. The governing equations are
written down and nondimensionalized in § 3, and the relation (3.20) between volume
flux and momentum flux is derived as a first integral of these equations: this is a
pivotal result of the paper. A thorough analysis of plume motion, based on (3.20),
is presented in § 4 and 5 for upward and downward motion respectively, with all
possible regimes considered. In § 6 we discuss the application of our results to power
station cooling water discharges, which provided the motivation for this study. Some
concluding remarks are given in § 7. Results in § 4–6 are presented graphically based
on numerical integrations, but many asymptotic formulae have also been derived,
which give further insight into the dynamics. However, these formulae have mainly
been confined to the Appendix to avoid cluttering the main text with mathematical
detail.
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2. Modelling considerations
To model the behaviour of warm plumes in cold fresh water, we must account for

two physical phenomena: the non-monotonic dependence of density ρ on temperature
T , and the entrainment of ambient fluid. For the former, Oosthuizen & Paul (1996)
state that a quadratic relationship

ρ = ρm − β(T − Tm)2 (2.1)

is a good fit to experimental data for temperatures up to 10 ◦C, implying that (2.1) is
adequate to analyse a power station cooling water discharge at 10 ◦C into an ambient
at 0 ◦C. The constants in (2.1) are: Tm = 3.98 ◦C, the temperature of maximum density
for fresh water at atmospheric pressure (taken as 4 ◦C in numerical examples below);
ρm = 1.000 × 103 kg m−3, the density at that temperature; β = 8.0 × 10−3 kg m−3( ◦C)−2

(Moore & Weiss 1973).
Entrainment will be modelled using the well-established hypothesis of Morton,

Taylor & Turner (1956), that ambient fluid is entrained at a velocity proportional
to the vertical velocity within the plume. A defence of this entrainment model in a
case involving buoyancy reversal has been given by Caulfield & Woods (1995). An
issue of particular relevance to the present application is that the plume must be
fully turbulent for the entrainment assumption of Morton et al. (1956) to be valid.
This would certainly be achieved in a power station discharge, with its large volume
flux. However, in a laboratory-scale experiment, with a plume driven by the very
small density differences in water close to its temperature of maximum density, the
Reynolds number may be too low for the required level of turbulence. Calculations
of Reynolds numbers in these situations are given in § 7 below.

If the warm water reaches the surface and then spreads out horizontally, our
plume model will clearly become invalid where surface impingement effects become
significant. A more severe limitation applies in the case where a fountain is formed,
since the entrainment will then be between the inner upflow and outer downflow,
as well as from the ambient into the downflow. Bloomfield & Kerr (2000) have
developed a model of fountains, taking all these interactions into account. However,
the same authors’ previous model assumed entrainment directly from the ambient
into the upflow, with surprisingly good agreement with experimental results for the
initial fountain height in the case of an axisymmetric fountain, although a greater
discrepancy was found for line fountains (Bloomfield & Kerr 1998).

Whereas Bloomfield & Kerr’s fountains were produced by injecting dense fluid
upwards into a less dense ambient, we are considering fountains resulting from
buoyancy reversal. Turner (1966) drew attention to the fundamental differences
between these situations; he found that plumes with buoyancy reversal become
oscillatory, and obtained scaling laws for the height, radius and period of oscillation
of such plumes. Plumes and jets with buoyancy reversal have previously been
considered in the context of evaporative cooling at cumulus cloud tops (Turner
1966), hydrothermal vents at the ocean floor (Turner & Campbell 1987) and volcanic
plumes (Caulfield & Woods 1995), as well as fresh water below the temperature of
maximum density (Gu & Stefan 1993). Of these authors, only Caulfield & Woods
(1995) have provided an analysis of the plume entrainment equations with density
as a quadratic function of mixing ratio. Although in their case mixing between
plume and ambient fluid caused a decrease in density, their results show many
similarities to those presented here, in particular when one notes our reciprocal
relation (below) between volume flux and temperature (although they did not have
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such a convenient parameter as temperature in terms of which to express the nonlinear
density formulation). However, they only considered axisymmetric plumes and motion
in one direction, and their analysis was not as detailed as that presented below.

The classical models of steady plumes use equations for conservation of mass,
momentum and buoyancy (e.g. Turner 1973). Conservation of buoyancy applies if the
buoyancy is a linear function of some conserved quantity (thermal energy, salinity,
etc.). In the present case, the buoyancy is a nonlinear function of temperature,
which is proportional to thermal energy; thus we shall use equations derived from
the conservation laws for mass, momentum and thermal energy (cf. Gu & Stefan
1988; Wüest, Brooks & Imboden 1992), with the nonlinearity appearing in the
buoyancy forcing term in the momentum equation. We will make the usual Boussinesq
approximation, that density variations will be ignored except in the buoyancy term
which is the difference between hydrostatic pressure gradients within and outside the
plume. The dynamic pressure is ignored, on the basis that the plume is thin; this
assumption breaks down where radial spreading due to surface impingement becomes
significant.

We assume symmetry and self-similarity, so that horizontal profiles of vertical
velocity w′(x, z) and temperature T ′(x, z) (where x is the cross-plume coordinate)
may be replaced by equivalent top-hat profiles, w(z) and T (z), both with the same
half-width b(z):

bw =

∫ ∞

0

w′ dx, (2.2)

bw2 =

∫ ∞

0

w′2 dx, (2.3)

bwT =

∫ ∞

0

w′T ′ dx. (2.4)

In case the velocity and temperature profiles are of different widths, as found by
Rouse, Yih & Humphreys (1952), a transformation similar to that employed by
Lee & Emmons (1961) may be used to obtain the equations in the next section.

Ambient water of uniform temperature T∞ and density ρ∞ is entrained into the
plume at a velocity ve, assumed to be proportional to the vertical velocity (Morton
et al. 1956):

ve = α|w|. (2.5)

The entrainment constant α has a value around 0.08 for top-hat profiles according
to Turner (1973), but 0.16 according to Lee & Emmons (1961); the factor of 2/

√
π

required to account for Lee & Emmons’ Gaussian profile only exacerbates the
discrepancy, and the later review by Turner (1986) does not provide any further
information for two-dimensional plumes. Although α is scaled out of most of the
calculations below, we take α =0.1 where a numerical value is required.

We shall consider the cases of upward and downward motion separately, orienting
the vertical coordinate z and the vertical velocity w in the direction of motion in
each case. Since a change in direction does not imply a switch from entrainment
to detrainment, the equations describing entrainment (of mass and thermal energy)
would otherwise involve a factor |w|, and so would in any case have to be solved
separately for upward and downward motion. Furthermore, although we will see
that the mathematical solution can be continued through a change in direction of
the plume, this is unphysical as it represents upward- and downward-moving fluid
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occupying the same space (Caulfield & Woods 1995); this is where the fountain
equations of Bloomfield & Kerr (2000) would be required. We are not attempting
such a complex model here, but we do expect that our analysis will provide useful
information on important parameters such as maximum height of an upward plume
and height at which buoyancy reversal occurs.

3. Governing equations and scalings
Conservation of mass yields, after cancelling the density (under the Boussinesq

approximation), an equation for volume flux:

d

dz
(bw) = αw. (3.1)

Next in the analysis of Morton et al. (1956) and many subsequent authors is an
equation for conservation of buoyancy flux, but this depends on the buoyancy being
a linear function of a conserved quantity. This is not therefore applicable in the
present case, so we consider conservation of thermal energy, which yields an equation
for temperature flux:

d

dz
(bwT ) = αwT∞. (3.2)

Equations (3.1) and (3.2) give the temperature in the plume:

T = T∞ +
F

2bw
, (3.3)

where F is the relative thermal flux which is conserved because of the unstratified
ambient conditions:

F = 2bw(T − T∞) = constant. (3.4)

The vertical momentum equation is

d

dz
(bw2) = ∓gb

ρ − ρ∞

ρm

(3.5)

(Lee & Emmons 1961), where the upper and lower signs refer to upward- and
downward-moving plumes respectively. Using the equation of state (2.1) to obtain the
buoyancy force in terms of temperature, and then eliminating the latter by means of
(3.3), this becomes

d

dz
(bw2) = ∓gβ

ρm

b (T − T∞)(2Tm − T − T∞) (3.6)

= ∓gβ

ρm

F

2w

(
2Tm − 2T∞ − F

2bw

)
. (3.7)

It will be convenient to use volume flux

q = bw (3.8)

and momentum flux

m = bw2 (3.9)

(of the half-plume) as dependent variables rather than width and velocity. Noting
that

b =
q2

m
, w =

m

q
, (3.10)
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the equations (3.1) and (3.7) for volume flux and momentum flux become

dq

dz
=

αm

q
, (3.11)

dm

dz
= ∓gβ

ρm

Fq

2m

(
2Tm − 2T∞ − F

2q

)
. (3.12)

The natural scaling parameters of the problem are the temperature scale (Tm − T∞),
the conserved thermal flux F and the buoyancy scale

gm =
gβ(Tm − T∞)2

ρm

; (3.13)

the first two of these combine to provide a volume flux scale

qT =
F

Tm − T∞
. (3.14)

Hence we define dimensionless variables

Z =

(
α2gm

q2
T

)1/3

z, B =

(
gm

αq2
T

)1/3

b, W =

(
α

gmqT

)1/3

w,

Q =
q

qT

, M =

(
α

gmq4
T

)1/3

m, θ =
T − T∞

Tm − T∞
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.15)

where we are scaling out the entrainment coefficient α so that our results are
independent of its numerical value. Note that a plume with θ = 1 is at the temperature
of maximum density, while a plume with θ =2 has the same density as the ambient,
due to the equation of state (2.1): thus buoyancy reversal occurs when θ passes
through the value 2.

The thermal flux equation (3.4) yields a relation between dimensionless temperature
and volume flux,

θ =
1

2Q
, (3.16)

and the equations of motion (3.11) and (3.12) become

dQ

dZ
=

M

Q
(3.17)

dM

dZ
= ∓4Q − 1

4M
. (3.18)

Eliminating Z, we obtain

dM

dQ
= ∓4Q2 − Q

4M2
, (3.19)

with solution

M3 = M 3
0 ∓

(
Q3 − 3

8
Q2

)
, (3.20)

where M0 is the value of M at Q =0. The variation of volume flux and momentum flux
with height can then be obtained by substituting from (3.20) into (3.17) and integrating
numerically. It is useful to bear in mind that buoyancy forces are upward where
Q < 1/4 and downward where Q > 1/4, since according to (3.16) these inequalities
imply θ > 2 and θ < 2 respectively.
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Figure 3. Trajectories in Q–M space from solution (3.20) for upward motion, with
M0 = −0.14, M0 = 0 and M0 = 0.14.

Plume width and velocity are obtained from dimensionless forms of (3.10). The
plume’s expansion angle ψ is given by

tan ψ =
db

dz
= α

dB

dZ
(3.21)

= α

(
2 − 1

W 2

dM

dZ

)
(3.22)

= α

(
1 − B

W

dW

dZ

)
. (3.23)

Since α is rather small, tan ψ ≈ ψ in most regions of the plumes; thus, for brevity
we shall often refer to the quantity α dB/dZ as the expansion angle of a plume. The
quantity dB/dZ will be called the normalized expansion angle.

The solution (3.20) is plotted for various values of M0, for upward motion in
figure 3 and for downward motion in figure 7. Plume motion is from left to right in
these plots, since the volume flux Q must always be increasing due to entrainment.
Points where plume trajectories emerge from either axis represent virtual sources:
on the M-axis, including the origin, the plume width is zero while its velocity and
temperature are infinite; on the Q-axis, the velocity is zero but the width is infinite.
The solution (3.20), in terms of the single parameter M0 describing conditions at an
unphysical virtual source, is mathematically elegant but is not so useful for providing
physical insight. It is therefore useful to relate M0 to conditions at a physical source.
Plume behaviour is governed by the dimensionless temperature and Froude number
at the source (Lee & Emmons 1961), defined respectively as

θs =
Ts − T∞

Tm − T∞
, φs =

ws√
gmbs

, (3.24)

where bs , ws and Ts are the width, velocity and temperature at the physical source; note
that we shall always define Froude numbers with respect to the constant buoyancy
scale gm rather than the buoyancy of the plume, so that the Froude number is simply
a dimensionless velocity. Given positive, finite values of θs and φs , we can find the
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corresponding coordinates in Q–M space,

Qs =
1

2θs

, Ms =

(
αφ2

s

16θ 4
s

)1/3

, (3.25)

and substitute into (3.20) to obtain

M0 = (2θs)
−4/3

(
αφ 2

s ±
(

2θs − 3

2
θ 2
s

))1/3

. (3.26)

Conversely, any point (Qs, Ms) on a trajectory in Q–M space can be regarded as a
possible physical source for a plume, with

θs =
1

2Qs

, φs =
M 3/2

s

α1/2Q 2
s

. (3.27)

4. Rising plumes
The upper, middle and lower curves in figure 3 represent a forced plume, a pure

plume and a lazy plume, respectively, in the nomenclature preferred by Hunt & Kaye
(2005). The pure plume emanates from a virtual source that supplies buoyancy flux but
no momentum flux or volume flux. The forced plume is given an upward momentum
flux as well as buoyancy flux at its virtual source (so may alternatively be thought
of as a buoyant jet); the source has zero volume flux, and hence infinite temperature,
by (3.16). In contrast, the lazy plume has less upward momentum flux than a pure
plume; it comes from a virtual source with positive volume flux Q0, zero momentum
flux and finite temperature. Its negative value of M0 suggests a downward initial
momentum flux at a source with Q =0 (Morton 1959), but that initial downward
motion would obviously not appear in this plot, even if we make the unphysical
continuation from it to the rising plume. All three plumes in figure 3 have upward
momentum flux increasing to a maximum when Q =1/4; at this point the buoyancy
force changes sign and the momentum flux then decreases to zero, so that all rising
plumes eventually come to rest with infinite width and finite final volume flux Qf (in
our model, which cannot describe fountains or the oscillatory behaviour identified by
Turner 1966). The value of Qf , and also of Q0 in the case of a lazy plume, can be
found as solutions of (3.20) with M = 0. The initial and final volume fluxes Q0 and
Qf converge to the value 1/4 as M0 approaches a critical value −2−7/3 ≈ −0.1984; no
rising plume can exist with larger negative values of M0 than this. The number 2−7/3

will be seen to have further significance in the context of descending plumes.
The differences between the three classes of plume are most pronounced near their

respective virtual sources, as shown by the asymptotic formulae (A 1)–(A 12) (see
Appendix, § A.1) for volume flux, momentum flux, half-width and vertical velocity
close to the three classes of virtual source: note that in all cases the zero of the vertical
coordinate Z is set at the virtual source. The different behaviours near the source are
also apparent in figure 4, where the half-width, normalized expansion angle, velocity,
temperature and momentum flux are plotted as functions of height for a pure plume
and for examples of a forced plume and a lazy plume. A forced plume has an initial
expansion angle of 2α as for a jet, so is broader than a pure plume for which the angle
is (4/3)α at its source (see (A 3) and (A 7)); this is because the greater velocity of the
forced plume in its earlier stages (figure 4c) leads to greater entrainment. In contrast,
a lazy plume has infinite width at its virtual source, but the width rapidly contracts
to a minimum and the velocity rises to a maximum, with minimum width occurring
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Figure 4. Dimensionless plume properties versus height above virtual source for a pure
plume (solid curves), a forced plume with M0 = 0.14 (dashed curves) and a lazy plume with
M0 = −0.14 (dotted curves): (a) half-width, (b) normalized expansion angle, (c) vertical velocity,
(d) temperature, (e) momentum flux. The vertical line on panel (b) indicates the normalized
expansion angle for a non-buoyant jet, while that on panel (d) indicates the temperature of
zero buoyancy.

before maximum velocity, which in turn occurs before the point of zero buoyancy
(see Appendix, § A.3). Beyond the point of maximum velocity, the lazy plume appears
remarkably similar to the forced plume, while the pure plume remains the narrowest
(figure 4a); but a more strongly forced plume than in the example in figure 4 would
eventually become narrower than the pure plume.

The plume angle increases monotonically for the pure plume (panel b). However,
the forced plume’s angle initially decreases, remaining less than that for a jet while
its momentum flux is increasing; it then becomes equal to the jet value of 2α at
the zero-buoyancy level, and greater than the jet value when its momentum flux is
decreasing: see also (3.22). As the plumes come to rest, they all spread out to infinite
width (not apparent on the scale used in figure 4a).
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Figure 5. Dimensionless height of zero buoyancy, calculated from (4.1), as a function of M0.

The temperature plot (figure 4d) shows that the greater entrainment in the forced
plume causes it to cool down much more rapidly than the pure plume, thus reaching
the temperature of zero buoyancy at a lower level, as also shown by the positions of
the maxima in momentum flux (panel e). The lazy plume, despite starting from a finite
temperature, cools down rather slowly due to its low velocity and consequent slow
entrainment, and the height at which it reaches the temperature of zero buoyancy is
close to that of the pure plume. We may calculate this zero-buoyancy height as

Zn =

∫ 1/4

Q0

Q

M
dQ, (4.1)

from (3.17), where we use the convention that Q0 = 0 for forced and pure plumes.
The height Zn is the maximum depth of water in which a plume could reach the
surface lighter than the ambient, and so spread out as a surface gravity current. It
is plotted as a function of M0 in figure 5, and asymptotic formulae valid for various
ranges of M0 are given in the Appendix, § A.2. Figure 5 clearly confirms that for
forced plumes, an increase in the forcing at the source causes a decrease in the height
travelled before the zero-buoyancy condition is reached (with the caveat that we are
considering a virtual source here, so this may not be directly applicable to practical
situations: see § 6 below): for large M0, Zn decreases as 1/M0. For lazy plumes,
there is very little variation in Zn for −0.15 <M0 < 0: the maximum value of Zn is
0.1967 at M0 = −0.0874, compared with Zn =0.1960 for a pure plume. Only when M0

comes close to the critical value −2−7/3 does Zn reduce significantly. A plume in this
near-critical regime has a virtual source only a little above the temperature of zero
buoyancy: it therefore experiences a very weak upward buoyancy force, so its velocity
remains low, but the consequent slow entrainment means that it cools down very
slowly and so can still travel a considerable distance before its temperature drops to
θ =2.

The maximum rise height of the plume and the dimensionless temperature at that
height can be found from (3.17) and (3.16) as

Zf =

∫ Qf

Q0

Q

M
dQ, (4.2)
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Figure 6. (a) Maximum rise height and (b) temperature at this height, as a function of M0.
The vertical dashed line in (b) indicates the critical value M0 = −2−7/3.

θf =
1

2Qf

(4.3)

and are plotted as functions of M0 in figure 6. In our model, the plume comes to rest
at the height Zf . In reality, this will be the height of the fountain top, attained only
momentarily if the oscillatory regime of Turner (1966) applies; it is also the maximum
depth of water in which the plume will impinge on the surface.

The plume attains its maximum rise height when all the momentum flux attained
at the point of zero buoyancy has been removed by adverse buoyancy forces. Setting
Q =1/4 in (3.20), the momentum flux to be removed is

Mn =

(
M3

0 +
1

128

)1/3

. (4.4)

The variation of Mn with the initial forcing M0 is directly reflected in the amount of
cooling required to bring the plume to rest (figure 6b): the fountain-top temperature
θf varies little from its pure-plume value of 4/3 while |M0| < 0.1, but decreases as
1/M0 for strong forcing (when Mn ∼ M0) and increases rapidly towards the zero-
buoyancy temperature as M0 approaches −2−7/3. Consequently, for moderate values
of M0 the increased entrainment is the dominant effect on Zf as for Zn, and we have
the rather counter-intuitive result that pushing a plume harder at its source may lead
to it rising less far; a similar phenomenon was found by Turner (1986) with vortex
rings in a stable environment. However, this effect of entrainment is less pronounced
than was found for Zn, and Zf reaches a minimum value of 0.4297 when M0 = 0.1791,
compared to Zf = 0.4534 for a pure plume. For larger values of M0, the requirement
to remove more momentum flux means that the plume can travel further, and for
strong initial forcing the height of a fountain increases linearly with M0. For lazy
plumes, the variation of Zf with M0 is similar to that of Zn, except that the maximum
of Zf is at M0 = 0: as laziness (negative M0) increases from zero, the slight reduction
in the amount of cooling required to bring the plume to rest cancels out the effect of
reduced entrainment which caused Zn to increase. All the above physical effects are
reflected in the asymptotic formulae (see Appendix, § A.2).

5. Descending plumes
Figure 7 shows trajectories in Q–M space for downward plumes with five values of

M0. As before, plumes with negative, zero or positive values of M0 are described as lazy,
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Figure 7. Trajectories in Q–M space from solution (3.20) for downward motion, with
M0 = −0.14, M0 = 0, M0 = 0.14, M0 = 2−7/3 and M0 = 0.24, as identified by labels on curves.
The curve for M0 = 2−7/3 separates strongly forced from weakly forced plumes, while the line
Q = 1/4, corresponding to θ = 2, separates the warm and cool sectors.

pure or forced, respectively; however, M0 is now a downward momentum flux, and the
forcing (or otherwise) provided by the source is with respect to downward momentum.
It is clear from the figure that the important distinction among downward plumes
is according to whether M0 is greater or less than 2−7/3. The case M0 = 2−7/3 will be
designated critical forcing; recall that upward plumes cannot exist with M0 < −2−7/3.
A plume with M0 > 2−7/3 is described as strongly forced. If 0 <M0 < 2−7/3, there are
two branches of the solution: the one with Q < 1/4 (so that θ > 2) is the warm weakly
forced plume, while the branch with Q > 1/4 (so θ < 2) is the cool weakly forced
plume. Pure and lazy plumes only exist in the cool sector, because a warm (θ > 2)
plume has upward buoyancy and so would need downward forcing from its source
in order to move downwards. It is evident from figure 7 that all plumes in the cool
sector, regardless of forcing or laziness, behave similarly at large distances from the
source (the far field ), corresponding to large Q in figure 7.

The virtual source of a strongly forced plume or a warm weakly forced plume has
infinite temperature, so that the buoyancy force is initially upward. The behaviour
near the source is similar to that for an upward forced plume, except that the
momentum flux is decreasing (as shown by the sign change in (A 2)). The plume is
ejected downward, and the adverse buoyancy depletes its momentum flux; however,
by entraining cold water, it is continually reducing the upward buoyancy. Weak
forcing means that the initial momentum flux is insufficient to prevent the plume
being brought to rest before cooling to the temperature of zero buoyancy (θ = 2),
whereas strong forcing means that the plume reaches this temperature with positive
downward momentum and can then gain momentum flux as the buoyancy force
becomes favourable (downward). A critically forced plume comes to rest exactly at
the temperature of zero buoyancy, and can in principle then accelerate downwards,
although this continuation may be considered unphysical as the plume has infinite
width where it comes to rest; instead, we may refer separately to warm and cool
critically forced plumes.

A rising lazy plume is a mathematical continuation of a descending weakly forced
plume with the same value of |M0|. Similarly, a descending, cool weakly forced or lazy
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plume is the respective mathematical continuation of a rising, lazy or forced plume.
Although it is tempting to think of a plume simply changing direction, possibly twice,
this is unphysical (cf. Morton 1959): not only would it pass through a condition of
infinite width, but the plume after the reversal would be passing through the same
space that is occupied by the plume before the reversal. A physically realistic model
for change of direction would be as a fountain, inverted in the case of a descending
weakly forced plume. However, considering the mathematical connection between
rising and descending plume solutions does help to clarify why rising plumes cannot
exist with larger negative values of M0 than the critical value.

We now discuss the details of plume motion for three classes of downward plume:
strongly forced, warm weakly forced, and cool, with the critically forced plume
considered as a limiting case of each class.

5.1. Strongly forced plumes

Figure 8 details the development of a critically forced plume (both warm and cool
phases) and of strongly forced plumes with two values of M0, one of which is close to
the critical value. The point of zero buoyancy is where the momentum flux (panel b)
reaches its minimum and the volume flux (panel a) passes through the value 1/4.
For the critically forced plume, the volume flux (and hence temperature) is stationary
and the vertical velocity falls to zero at this point, so that the plume is travelling
a substantial distance at low velocity (hence low entrainment) under very small
buoyancy forces. For strongly forced plumes, the vertical velocity (panel e) has a
minimum beyond the point of zero buoyancy (see Appendix, § A.4). In the far
field where Q 	 M0, M ∼ Q from (3.20); (3.17) then shows that the volume flux and
momentum flux both increase linearly with distance, so that the normalized expansion
angle dB/dZ and the dimensionless vertical velocity W both approach unity as Z → ∞
for all plumes (see Appendix, § A.5, for more details).

The variation of plume width and expansion angle (panels c and d in figure 8) may
be derived from the velocity and momentum flux variations using (3.22) and (3.23).
The expansion angle must change from an initial value of 2α (the angle associated
with non-buoyant jets) to a final angle of α; the latter is the angle associated with
pure plumes with a linear equation of state, and occurs because the effects of the
initial momentum and the nonlinear temperature-density relation are no longer felt
at great distances. The expansion angle also passes through 2α at the point of zero
buoyancy and through α at the point of minimum velocity. It is greater than 2α while
there is an adverse buoyancy force, and less than α while the plume is accelerating; in
the case of the plume with M0 = 0.205, the expansion angle actually becomes negative,
i.e. the plume contracts for some distance. A region of plume contraction is obviously
required for the cool critically forced plume, starting from infinite width at the point of
zero buoyancy, and also occurs for strongly forced plumes with M0 < 2−2/3/3 ≈ 0.2100.
On the other hand, for larger values of M0 there is less ‘overshoot’ in the transition
from the initial angle 2α to the final angle α.

The distance Zn below the source at which zero buoyancy occurs is again given by
(4.1) (with Q0 = 0), and is plotted as a function of M0 in figure 9; asymptotic formulae
are given in the Appendix, § A.6. Most striking is the rapid drop in Zn as M0 rises a
little above critical. As for rising plumes, greater velocity implies greater entrainment
and hence a decrease in the distance travelled to achieve the fixed amount of cooling
between the source and the zero-buoyancy condition. The low velocity and small
buoyancy forces experienced by the critically forced plume around the zero-buoyancy
point contrast with the much greater velocity and buoyancy forces for a plume with
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Figure 8. Dimensionless plume properties versus vertical distance below an infinite-
temperature virtual source for a critically forced plume with M0 = 2−7/3 ≈ 0.1984 (solid curves)
and strongly forced plumes with M0 = 0.205 (dotted curves) and M0 = 0.24 (dashed curves):
(a) volume flux, (b) momentum flux, (c) half-width, (d) normalized expansion angle, (e) vertical
velocity. Vertical dashed lines indicate: level of zero buoyancy in (a); normalized expansion
angles for non-buoyant jets and pure plumes in (d); limiting value of velocity in far field in (e).
The Z-axis is downwards to indicate orientation of plume (also in all plots below referring to
descending plumes).

forcing only slightly above critical (see figure 8): hence the large difference in distances
travelled.

5.2. Warm, weakly forced plumes

Figure 10 details the development of a warm critically forced plume and of warm
weakly forced plumes with two values of M0, one of which is close to the critical
value. In each case, the plume comes to rest with volume flux Qf � 1/4 and infinite
width, but the main feature of interest is the big difference made by a slight departure
from critical forcing (as was the case with strongly forced plumes). A critically forced
plume travels a long distance with low velocity, low entrainment and hence very
gentle deceleration, but this situation is very sensitively balanced: a small decrease in
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for strongly forced plumes. The vertical dashed line indicates the value of M0 for a critically
forced plume.

0.05 0.10 0.15 0.20 0.25

0.5

0.4

0.3

0.2

0.1

Z

Q
0.05 0.10 0.15 0.20

0.5

0.4

0.3

0.2

0.1

M

0.5 1.0 1.5 2.0

0.5

0.4

0.3

0.2

0.1

Z

B
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.5

0.4

0.3

0.2

0.1

W

(a) (b)

(c) (d)

Figure 10. Dimensionless plume properties versus vertical distance below an infinite-
temperature virtual source for a critically forced plume (solid curves) and warm weakly
forced plumes with M0 = 0.192 (dotted curves) and M0 = 0.16 (dashed curves): (a) volume flux,
(b) momentum flux, (c) half-width, (d) vertical velocity. Horizontal dashed lines in (c) indicate
distances at which plumes come to rest.

initial momentum flux from the critical value 2−7/3 ≈ 0.1984 leads to a large reduction
in total distance travelled before coming to rest. This reduction in Zf as M0 decreases
from its critical value is characterized by the 1/6-power term in the asymptotic
formula (A 56), and can be seen in figure 10(b) by comparing the Z-axis intercepts of
the curves for M0 = 2−7/3 and M0 = 0.192.
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Figure 11. Dimensionless plume properties versus vertical distance below a finite-temperature
virtual source for a cool critically forced plume (solid curves), cool weakly forced plumes with
M0 = 0.192 (dotted curves) and M0 = 0.16 (dashed curves) and a lazy plume with M0 = −0.14
(dash-dotted curves): (a) temperature, (b) momentum flux, (c) half-width, (d) vertical velocity.
The vertical dashed line in panel (d) indicates the far-field limiting value of velocity.

If the initial momentum flux is small, a warm descending plume will be brought
to rest rapidly by the strong adverse buoyancy force at high temperature, before it
has entrained enough cold water to significantly reduce this force. Thus the distance
travelled by the plume will be very small, as shown by the quadratic dependence of
Zf on M0 in the asymptotic formula (A 55) for small M0. The temperature at which
a warm weakly forced plume comes to rest may be calculated using (4.3), with Qf

here being identical to the Q0 for lazy rising plumes, as given by formulae (A 20) and
(A 24). This temperature decreases monotonically with increasing initial momentum
flux.

5.3. Cool plumes

Here we consider plumes from virtual sources with volume flux Q0 � 1/4, zero
momentum flux and finite temperature; the value of M0 for such a plume satisfies
(3.20) with Q =Q0 and M = 0, but cannot now be regarded as an initial momentum
flux as this would require an unphysical continuation from a notional earlier stage of
motion. The source of a critically forced plume is now taken as the point where it is
at rest with Q = 1/4.

Figure 11 shows the development of a critically forced plume and three plumes
with smaller values of M0: two of these are weakly forced, having the same values
of M0 as those in figure 10, while the third is lazy (with negative M0); however, it is
clear that there is no qualitative distinction between weakly forced and lazy plumes
in this regime, whereas again the critically forced plume behaves differently from the
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Figure 12. Plume properties at the neck, as a function of M0 for cool plumes and strongly
forced plumes with M0 < 2−2/3/3: (a) temperature, (b) distance downwards from source, and
(c) half-width. The horizontal axis in (b) is drawn at the value of Zm for a critically forced
plume.

others. The distinction between the near-source behaviour of critically forced and
other cool plumes is quantified in the comparison between formulae (A 9)–(A 12) and
(A 13)–(A 16), and may be explained physically by the fact that there is zero buoyancy
force at the critical source, whereas there is a downward force acting at any other cool
source; we may suppose that the critically forced plume can move from its position of
rest only due to some infinitesimal perturbation. Note that (Q0 −1/4) has a 1/2 power
dependence on the deviation of M0 from its critical value (from (A 22), noting the
mathematical continuation from upward plumes), and this magnifies the sensitivity
to slight deviations from critical forcing when forcing is quantified by the parameter
M0. Further from the source, the contraction in width, reduction in temperature,
acceleration from rest and gain in momentum flux of the critically forced plume are
all delayed (as functions of distance from source) relative to other cool plumes, as
shown in figure 11.

Like lazy rising plumes, cool descending plumes have infinite width at their source
but are broadening at large distances from the source (see (A 51)), so the plume width
must attain a minimum value at some point, known as a neck (Hunt & Kaye 2005).
This occurs where the volume flux has the value Qm satisfying

Q2
m − 2Q3

m = 4M3
0 . (5.1)

The temperature θm, distance Zm from the source and half-width

Bm = 2Q2
m

(
Q2

m − 8M3
0

)−1/3
(5.2)

at the neck are shown as functions of M0 in figure 12, which also includes (except
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in the Zm plot) the small range of strongly forced plumes which have a neck. To
interpret this figure it is helpful to think in terms of the temperature θ0 at the virtual
source of cool plumes: in particular, as well as M0 = 2−7/3 ≈ 0.1984 corresponding
to the zero-buoyancy temperature θ0 = 2, a pure plume (M0 = 0) has θ0 = 4/3 while
a source at the temperature of maximum density θ0 = 1 has M0 = −2−5/3 ≈ −0.3150.
One should also bear in mind that a narrow neck close to the source requires strong
acceleration of the plume from the source.

Three distinct regimes are apparent in figure 12. Firstly, for M0 � −0.2, i.e. source
temperature close to or below the temperature of maximum density, the neck’s half-
width and distance from the source increase linearly with increasingly negative M0,
while the temperature at the neck decreases. The buoyancy forces acting on the
plume become weaker as the source temperature decreases below the temperature of
maximum density (i.e. for larger negative M0), and the resulting weaker acceleration
of the plume produces a broader neck, further from the source. Secondly, for M0

values above −0.2 and not too close to the critical value 2−7/3 ≈ 0.1984, there is very
little variation in the half-width, location or temperature of the neck with M0. With
θm close to the temperature of maximum density, the plume experiences fairly large
buoyancy forces throughout its progress from the source to the neck, so accelerates
rapidly to reach a rather narrow neck within a short distance. Finally, with M0 close
to the critical value, the initially weak buoyancy force leads to a considerable delay
in reaching the neck, although this allows the plume to become even narrower than
for smaller M0. However, the narrowest neck occurs in a strongly forced plume with
M0 = 2−2/3/3, the greatest value of M0 for which a neck exists. These results are
quantified in the Appendix, § A.8, where precise values and asymptotic formulae for
Qm, Zm and Bm are given.

In the far field, cool plumes behave in the same way as strongly forced plumes, as is
clear from figure 7. The behaviour is detailed in the Appendix, § A.5, and the leading
terms in the asymptotic formulae are of the same form as for two-dimensional plumes
with a linear equation of state (Lee & Emmons 1961). Plumes in the far field have
temperatures much closer to the ambient than the temperature of maximum density,
so the nonlinearity of the equation of state is a small correction when considering the
interaction of the plume with the ambient here. Figure 7 and equation (A 48) suggest
that all plumes in the far field appear to be emanating from a finite-temperature
virtual source with Q =1/8, θ = 4. However, in contrast to the linear case (Lee &
Emmons 1961), it is not possible to locate a unique position for such an apparent
source for all plumes.

6. Plumes from physical sources
While the results presented above cover all conceivable plumes in a fluid with a

quadratic equation of state, they are given in terms of conditions at a virtual source
and so may be difficult to interpret for studies of plumes from physical sources. There
are two kinds of physical source that would appear to be of practical relevance. Firstly,
a power station cooling water outfall at a lake bed would have upward buoyancy
and upward vertical velocity; we consider this case in some detail below. Secondly,
a plume descending from a surface gravity current that has mixed to below the
temperature of zero buoyancy would have dimensionless temperature θs just below 2,
volume flux Qs just above 1/4, momentum flux Ms and Froude number φs small and
positive (so that its width is finite); it would be a cool, descending plume according
to the classification of Section 5. The behaviour of such a plume is described in § 5.3;
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the only adjustment needed to the results there is to avoid the singularity at the
virtual source (see figure 11) by noting that the initial conditions prescribe a physical
source position a little below the virtual source. The cool plume is the only class of
descending plume which does not require its source to eject fluid downwards against
the buoyancy force.

The non-dimensionalizations (3.15) may be regarded as appropriate for the power
station discharge problem: the volume flux of warm water and the temperatures of
both the discharge and the receiving water are fixed by power station requirements and
environmental conditions, so the scales qT and gm are fixed. On the other hand, these
non-dimensionalizations are somewhat obscure for practical purposes; in particular,
with a physical source of half-width bs it would seem natural to define dimensionless
heights with respect to this parameter. We therefore define

ζ ≡ z

bs

= α−2/3(2θsφs)
2/3Z, (6.1)

where the Froude number φs and dimensionless temperature θs of the source are
defined in (3.24). Results are presented below using both definitions of dimensionless
height.

6.1. Plumes from a lake-bed outfall

We now consider a discharge at 10 ◦C into a lake at 0 ◦C; given the constraint that
power stations discharge their cooling water 10 ◦C warmer than it is taken in from
the ambient, this is the case of least initial buoyancy. It is therefore the worst case if
one is concerned with protecting the lake bed from intrusions of warm water, but the
best case if conservation of an ice cover is the principal concern.

With T∞ = 0 ◦C, Ts = 10 ◦C and Tm =4 ◦C, the dimensionless source temperature is
θs = 2.5 and the buoyancy scale is gm ≈ 1.3 × 10−3 m s−2. Macqueen (1979) quotes a
volume flux requirement of 25 m3 s−1 and a maximum discharge velocity of 2 m s−1

for cooling water from a power station; although he assumes a circular outfall, we
shall assume that the same values would apply for a linear source of half-width bs

and length L 	 bs (so that the geometry is approximately two-dimensional). Then the
source Froude number is φs ≈ 22

√
L (where L in measured in metres), so it will be of

particular interest to look at the case of large source Froude numbers.
With θs = 2.5, the relation between the source Froude number and the parameter

M0 used in previous calculations is

M0 =
(
0.0016αφ2

s − 0.007
)1/3

or equivalently φs =
25√
α

√
M3

0 + 0.007. (6.2)

In particular, with α = 0.1 we find φs ≈ 6.614 when M0 = 0; but the distinction between
forced, pure and lazy plumes is not so significant when considering plumes from
physical sources with moderate temperatures. The differences between the three
classes of plume are most pronounced near a virtual source, and figure 4 shows that
they all develop in rather similar ways from a source with θs = 2.5. However, it is of
interest to find the height of zero buoyancy and maximum fountain height for plumes
from such a source: these heights are plotted as functions of source Froude number
(which is within the outfall designer’s control) in figures 13 and 14. Note that φs = 0
corresponds to M0 ≈ −0.1913 while φs = 50 corresponds to M0 ≈ 0.7325.

For fixed volume flux and temperature at the source, the height of zero buoyancy Zns

(where the subscript s indicates a height measured from a physical source) decreases
monotonically with increasing Froude number. This is similar to the behaviour of Zn
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Figure 13. Height of zero buoyancy as a function of source Froude number for a source
with dimensionless temperature θs = 2.5, assuming α = 0.1. Dimensionless heights defined by
(a) (3.15) and (b) (6.1).
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Figure 14. Maximum fountain height as a function of source Froude number for a source
with dimensionless temperature θs = 2.5, assuming α = 0.1. Dimensionless heights defined by
(a) (3.15) and (b) (6.1).

(measured from a virtual source) for positive M0 (see figure 5): indeed, for large M0,
the leading-order term in the expansion (A 31) for Zn should simply be multiplied by
(1 − 4/θ2

s ) = 0.36 for θs = 2.5, to obtain the asymptotic behaviour of Zns . In terms of
source Froude number, we obtain

Zns ∼ 2−11/3

(
1 − 4

θ2
s

)
θ4/3
s α−1/3φ−2/3

s + O
(
φ−8/3

s

)
(6.3)

as φs → ∞. The discrepancy between the behaviour of Zns and the non-monotonicity
of Zn when M0 is negative is because the temperature of the virtual source is not
fixed as M0 varies in this range, whereas θs is fixed.

For fixed outfall width, figure 13(b) shows the height of zero buoyancy increasing
monotonically with Froude number, with

ζns → 1

8α

(
θ2
s − 4

)
as φs → ∞; (6.4)

this limiting value of ζns is 2.8125 when θs =2.5 and α = 0.1. The maximum water
depth in which a line discharge at 10 ◦C can spread across the surface of a lake
at 0 ◦C is less than three times the outfall width, irrespective of exit velocity; for a
fixed volume flux requirement, the possibility of surface spreading is maximized by
making the outfall as wide as possible, keeping Froude number low as indicated in
figure 13(a).
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For fixed volume flux, the maximum fountain height is a non-monotonic function
of source Froude number, but the minimum in figure 14(a) is not directly comparable
with that in figure 6(b) which occurs at a different value of φs: the elevation of the
physical source above its corresponding virtual source does not vary in a similar
way to the fountain height. However, the underlying reason is the same: for small
φs the dominant effect is that entrainment increases with Froude number so that
the plume loses buoyancy faster, but for larger φs the requirement to remove more
momentum means that the plume can travel further. For large φs , the distance from
the virtual source to the fountain top (Zf = O(φ2/3

s ) from (A 33)) is much larger than
that between the virtual and physical sources, which is of the same order as the
zero-buoyancy height (Zns =O(φ−2/3

s )); thus, to leading order, Zf s ∼ Zf in the limit
as φs → ∞. With fixed outfall width, the asymptotic dependence of fountain height on
source Froude number is

ζf s ∼ C1

2
α−1/3θ−2/3

s φ4/3
s +

22/3π

12
√

3
α−2/3θ2/3

s φ2/3
s + α−1

(
3

32
θ2
s − 1

2

)
+ O

(
φ−2/3

s

)
(6.5)

(obtained from (A 33) with C1 defined in (A 17)); the distance between virtual and
physical sources is accounted for in the constant term. Comparing figures 14 and 13,
the top of the fountain is more than 40 times the zero-buoyancy height for φs = 50.
Thus, an outfall with a high Froude number (high exit velocity from a narrow orifice)
gives the worst of both worlds: the warm water will return to the lake bed as a
fountain unless the water is very shallow, but the fountain will affect the surface ice
cover unless the water is very deep.

7. Conclusions
More sophisticated models of turbulent plumes, taking account of a nonlinear

equation of state as well as a variety of other factors, have been presented elsewhere,
e.g. Wüest et al. (1992). However, with such models a new numerical solution is
required for each specific application. The present study is concerned solely with the
effects of a quadratic equation of state; this focus has allowed us to make a thorough
study, obtaining asymptotic as well as numerical solutions for all possible regimes.
Plumes are considered to originate in virtual sources, allowing any physical source to
be interpreted as a point on such a plume’s trajectory. The classification into forced,
pure and lazy plumes, used by Hunt & Kaye (2005) but having its origin in the work
of Morton (1959), has needed to be refined: plumes that are forced to descend against
upward buoyancy may be strongly, critically or weakly forced.

The study was motivated by the temperature–density relationship of fresh water
below 10 ◦C, but the results could be adapted to other fluids with a quadratic
dependence of density on mixing ratio, e.g. volcanic plumes (Caulfield & Woods
1995) or certain chemical mixtures (Turner 1966). In these other applications, it
is possible that physical sources other than those considered in § 6 above may be
realistic.

For rising plumes, the most important parameters to be calculated are the zero-
buoyancy height and the fountain-top height. If the receiving water depth is less
than the zero-buoyancy height, the warm water will travel some distance from the
discharge site as a surface gravity current; otherwise, it will form a fountain, returning
to the bed close to the outfall from which it is discharged. We have shown that the
zero-buoyancy height may be rather small: less than 3 times the outfall width for a
discharge at 10 ◦C into receiving water at 0 ◦C. Although the zero-buoyancy height
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would increase as the ambient temperature approaches the temperature of maximum
density (for a fixed 10 ◦C temperature difference between a power station discharge
and the ambient), this does indicate that it may be difficult to avoid the lake bed
close to an outfall being affected by the return of warm water, as observed by
Hoglund & Spigarelli (1972). Even where a surface gravity current does form, it
will eventually lose buoyancy so that warm water will return to the lake bed, albeit
cooled more by mixing than in a fountain and removed some distance from the
outfall.

For fixed volume flux, the zero-buoyancy height decreases with increasing source
Froude number φs . This is due to the increased entrainment, and hence faster drop
in temperature, when the velocity is greater: it is counter-productive to give the
discharge a push at the outfall. For small source Froude numbers, the same effect
applies to the fountain-top height, which is the minimum depth of water in which a
rising plume would impinge on the surface; however, for moderate and large source
Froude numbers, this height increases with φs . Fountain-top height is of importance
if one is concerned about erosion of an ice cover. Thus, keeping the source Froude
number low is advisable whether one is concerned with minimizing impact on the
lake bed or on the surface.

In a Boussinesq fluid with a linear equation of state, changing the sign of the
initial buoyancy and momentum fluxes is simply equivalent to inverting gravity. This
is not true with our quadratic equation of state. In sufficiently deep water, a rising
plume will eventually come to rest however large the initial upward buoyancy and
momentum fluxes are, whereas a descending plume with downward buoyancy will
continue to descend indefinitely. Far from its source, a descending plume will behave
like a plume in a linear fluid with the same thermal expansion (or contraction)
coefficient as the quadratic fluid at its ambient temperature. Of more interest is the
fact that entrainment will increase the buoyancy of a plume between the temperatures
of zero buoyancy and maximum density, whereas in a linear fluid entrainment always
results in a decrease of buoyancy.

Some caution needs to be exercised in using the present results to predict the
behaviour of real plumes, especially if laboratory experiments are used either to
test the theory or to model larger-scale flows in the environment. Our governing
equations assume self-similarity and the entrainment model of Morton et al. (1956),
and we now consider two restrictions on the validity of these assumptions. Firstly,
they only become valid at a distance of several outfall widths from the plume source.
Our predictions of zero-buoyancy height for a discharge at 10 ◦C into an ambient
at 0 ◦C fall within the near-source region where our equations may not be accurate;
nevertheless, we do expect our predictions to be qualitatively correct. Secondly, the
entrainment model requires the plume to be fully turbulent, a condition usually
obtained with a Reynolds number Re> 2000 according to Fischer et al. (1979). This
criterion will be comfortably exceeded in a power station discharge; for instance, with
an outfall of width only 10 cm and a discharge velocity of 2 m s−1, Re ≈ 1.5 × 105,
given a kinematic viscosity ν ≈ 1.3 × 10−6 m2 s−1 for water at 10 ◦C (Batchelor 1967).
However, consider a rising plume at 10 ◦C issuing from an orifice of width bs = 1 cm
(fairly typical of laboratory experiments) into an ambient at 0 ◦C: if we specify a pure
plume, for which the source Froude number is φs ≈ 6.6 (from (6.2)), the exit velocity
is ws ≈ 0.024 m s−1, so Re< 200 at the source. Even at the maximum rise height, the
volume flux will be less than twice its value at the source (Qs = 0.2 for θs = 2.5, and
Qf = 0.375 for a pure plume), so the Reynolds number (proportional to Q) will be
below 400 throughout the plume. This is insufficient for self-generated turbulence;
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such an experiment would be of considerable interest in itself, but the results would
not then be representative of larger-scale flows in the fresh water environment. An
alternative approach in the laboratory would be to generate turbulence artificially,
e.g. using crosshairs (Bloomfield & Kerr 1998).

Possible directions for further theoretical research would include axisymmetric
geometry and the effects of ambient stratification. It will also be important to
model the entrainment in a fountain properly, as was done by Bloomfield & Kerr
(2000), and the oscillatory behaviour noted by Turner (1966) should be investigated
further.

This paper was improved following useful comments by referees on an earlier
version.

Appendix. Asymptotic formulae, their relation to physical effects, and other
mathematical details

A.1 Rising plumes: behaviour near virtual source

We distinguish four classes of virtual source. Note that where ± or ∓ signs are used,
the upper and lower signs apply to rising and descending plumes, respectively. The
formulae below all apply in the limit as Z → 0.
(a) Infinite-temperature sources. These sources have zero volume flux and positive
momentum flux M0. Apart from cool, weakly forced, descending plumes (see (c)
below), all forced plumes, whether rising or descending, emanate from an infinite-
temperature source:

Q ∼ (2M0)
1/2 Z1/2 + O

(
Z3/2

)
, (A 1)

M ∼ M0

(
1 ± 1

4M2
0

Z + O
(
Z3/2

))
, (A 2)

B ∼ 2Z + O(Z2), (A 3)

W ∼
(

M0

2

)1/2

Z−1/2 + O
(
Z1/2

)
. (A 4)

(b) Pure sources. These have zero volume flux and zero momentum flux. They are
sources for rising pure plumes.

Q ∼
(

8

9

)1/4

Z3/4 + O
(
Z3/2

)
, (A 5)

M ∼
(

Z

2

)1/2

+ O
(
Z5/4

)
, (A 6)

B ∼ 4

3
Z + O

(
Z7/4

)
, (A 7)

W ∼
(

9

32

)1/4

Z−1/4 + O
(
Z1/2

)
. (A 8)

(c) Finite-temperature sources. These have positive volume flux Q0 and zero
momentum flux. Lazy rising plumes and cool descending plumes (except for case
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(d) below) emanate from finite-temperature sources:

Q ∼ Q0 +

√
2

3

|1 − 4Q0|1/2

Q0

Z3/2 + O(Z3), (A 9)

M ∼
∣∣∣∣1 − 4Q0

2

∣∣∣∣
1/2

Z1/2 + O(Z2), (A 10)

B ∼
∣∣∣∣ 2

1 − 4Q0

∣∣∣∣
1/2

Q2
0 Z−1/2 + O(Z), (A 11)

W ∼
∣∣∣∣1 − 4Q0

2

∣∣∣∣
1/2

1

Q0

Z1/2 + O(Z2). (A 12)

(d) Critical sources. The formulae (A 9)–(A 12) are singular in the limit Q0 → 1/4.
A source with volume flux Q0 = 1/4 and zero momentum flux gives rise to a cool,
critically forced, descending plume:

Q ∼ 1

4
+

8

9
Z3 + O(Z6), (A 13)

M ∼ 2

3
Z2 + O(Z5), (A 14)

B ∼ 3

32
Z−2 + O(Z), (A 15)

W ∼ 8

3
Z2 + O(Z5). (A 16)

A.2 Rising plumes: height of zero buoyancy and height of plume top

We present asymptotic formulae for Zn and Zf valid in four ranges of M0, which
together account for all the variation of these heights shown in figures 5 and 6(a). The
formulae are derived from the integrals (4.1) and (4.2), using the method described
in § 3.4 of Hinch (1991) to account for a global contribution in addition to local
contributions from one or both ends of the range of integration. There is an added
complication that the limits of integration Q0 (for lazy plumes) and Qf are given as
asymptotic expansions in M0 (also presented below), so that the asymptotic analysis
requires a further rescaling each time the expansion for Zn or Zf is evaluated to the
order of the next term in the expansion of Q0 or Qf . Expansions for the plume-top
temperature θf can be derived from those for Qf by means of the relation (3.16). All
our expansions, including the order of the first neglected terms, have been checked
by comparison with numerical integrations.

For neatness, we use the symbols C1, C2 for the following numerical constants
which appear frequently:

C1 =
	( 5

6
)	( 2

3
)

√
π

≈ 0.8624, (A 17)

C2 = 2−1/3

∫ 2/3

0

t−2/3(1 − t)−1/3 dt ≈ 2.2446. (A 18)

(a) M0 close to critical. The critical value of M0 is −2−7/3 so the expansions are in
terms of the deviation from this value,

Md ≡ M0 + 2−7/3. (A 19)
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As M0 ↘ −2−7/3:

Q0 ∼ 1

4
− 2−5/6M

1/2
d − 21/3

3
Md +

25/2

9
M

3/2
d + O

(
M2

d

)
, (A 20)

Zn ∼ 2−41/18 32/3

{
C1 M

1/6
d − 21/6

3
M

2/3
d − 27/3 5 C1

21
M

7/6
d + O

(
M

5/3
d

)}
, (A 21)

Qf ∼ 1

4
+ 2−5/6M

1/2
d − 21/3

3
Md − 25/2

9
M

3/2
d + O

(
M2

d

)
, (A 22)

Zf ∼ 2−41/18 32/3

{
2C1 M

1/6
d − 210/3 5 C1

21
M

7/6
d + O

(
M

13/6
d

)}
. (A 23)

The leading-order 1/6 powers of Md give the rapid rise in Zn and Zf as M0 increases
from the critical value, as seen in figures 5 and 6. At leading order, the distance
travelled by the plume while gaining momentum is equal to that travelled while
losing momentum (i.e. Zf ∼ 2Zn), but this symmetry is broken at O(M2/3

d ).
(b) Small negative M0. As M0 ↗ 0:

Q0 ∼ 23/2

31/2
|M0|3/2 +

32

9
|M0|3 +

215/2 5

37/2
|M0|9/2 + O(|M0|6), (A 24)

Zn ∼ 2−8/3(C2 − 1) +
213/3

3
|M0|3 − 213/2 31/2 C1

7
|M0|7/2 + O(|M0|6), (A 25)

Qf ∼ 3

8
− 64

9
|M0|3 − 216

35
|M0|6 + O(|M0|9), (A 26)

Zf ∼ π

4
√

3
− 213/2 31/2 C1

7
|M0|7/2 + O

(
|M0|13/2

)
. (A 27)

The values of Zn and Zf for a pure plume (M0 = 0) are given by the leading-
order (constant) terms in the expansions (A 25) and (A 27). The terms of order
|M0|7/2 (and also O(|M0|n+7/2), (n= 1, 2, . . .)) are local contributions from a region
where Q =O(|M0|3/2) at the start of the integration range in (4.1) and (4.2); i.e.
they represent the effect of the (small) initial momentum flux deficit (relative to
a pure plume), which is felt in a region close to the virtual source. The terms of
order |M0|3n (n= 1, 2, . . .) in (A 25) are global contributions, representing the effect
of decreased entrainment allowing the plume to travel further before reaching the
condition of zero buoyancy; they are exactly cancelled out in (A 27), as the amount of
further entrainment required to bring a plume to rest after reaching the zero-buoyancy
level is less for a lazier plume.

The coincidence of opposing terms of high but close orders (|M0|3 and |M0|7/2) in
(A 25) gives the behaviour seen in figure 5 and more clearly in figure 15, where the
maximum value of Zn occurs at a moderate negative value of M0, but is barely above
the value of Zn for a pure plume.
(c) Small positive M0. As M0 ↘ 0:

Zn ∼ 2−8/3(C2 − 1) − 2M2
0 − 213/3

3
M3

0 +
211/2 3 C1

7
M

7/2
0 + O
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)
, (A 28)
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35
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)
, (A 29)

Zf ∼ π

4
√

3
− 2M2

0 +
211/2 3 C1

7
M

7/2
0 + O

(
M5

0

)
(A 30)
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Figure 15. Dimensionless height of zero buoyancy, as a function of M0 for small and moderate
negative values of M0. Solid line: numerical integration of (4.1); dashed line: asymptotic
formula (A 25) up to O(|M0|7/2).
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Figure 16. Dimensionless maximum rise height of plume, as a function of M0 for small
and moderate positive values of M0. Solid line: numerical integration of (4.2); dashed line:

asymptotic formula (A 30) up to O(M
7/2
0 ).

Similar comments apply here as to the case of small negative M0, except that the
local contribution from close to the source now consists of terms at orders M2

0 and

M
2+3n/2
0 , (n= 1, 2, . . .). The height of zero buoyancy is reduced as a result of increased

entrainment in two ways: by a global contribution (i.e. over the whole plume up to
Z = Zn) at O(M3

0 ), but more strongly (at O(M2
0 )) by a contribution from close to

the infinite-temperature virtual source (as distinct from the finite-temperature source
that applies in the case of negative M0). This O(M2

0 ) reduction also applies to the

maximum rise height Zf , but is overcome at larger values of M0 by the O(M7/2
0 )

term: figure 16 shows that the local minimum value of Zf is well predicted by the

asymptotic formula up to O(M7/2
0 ).
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Figure 17. (a) Minimum half-width, and (b) heights at which minimum half-width (solid line)
and maximum velocity (dashed line) are attained, as functions of M0 for lazy rising plumes.
The vertical dashed line in (a) indicates the critical value of M0.

(d) Large positive M0. As M0 → ∞:

Zn ∼ 1

32
M−1

0 − 7

213 15
M−4

0 + O
(
M−7

0

)
, (A 31)

Qf ∼ M0 +
1

8
+
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0 +
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, (A 32)

Zf ∼ 2−1/3C1 M0 +
π

12
√

3
+

3

128
M−1

0 +
5C1

228/3 3
M−2

0 + O
(
M−3

0

)
. (A 33)

The integrals in this case only have a global contribution. The integrand decreases with
increasing M0, reflecting the role of entrainment in decreasing the distance travelled
for a given temperature decrease; hence the O(M−1

0 ) behaviour of Zn. However, the
upper limit of integration for Zf is Qf which increases with M0 (more cooling being
required to remove a greater momentum flux), so that Zf increases with M0.

A.3 Lazy rising plumes: minimum width and maximum velocity

Setting dB/dZ = 0 and using equations (3.18), (3.20) and (3.22), we find that lazy
rising plumes have their minimum half-width

Bm = 2Q2
m

(
8|M0|3 − Q2

m

)−1/3
, (A 34)

where the volume flux takes the value Qm given by

Q2
m − 2Q3

m = 4|M0|3. (A 35)

The minimum half-width is plotted as a function of M0 in figure 17(a).
Setting dW/dZ = 0, noting that W = M/Q and using equations (3.17), (3.18) and

(3.20), lazy rising plumes are found to attain their maximum velocity

WM =

{(
|M0|
2−7/3

)−3/2

− 1

}1/3

, (A 36)

where the volume flux takes the value

QM = (2|M0|)3/2; (A 37)

(A 36) has been written in a form that emphasizes the role of the critical value of M0,
i.e. −2−7/3. The heights Zm and ZM at which minimum width and maximum velocity
occur can be found from integrals similar to (4.1), with Qm and QM , respectively,
inserted as upper limits of integration; these heights are plotted as functions of M0
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in figure 17(b). From the above formulae we obtain that Qm < QM < 1/4 whenever
−2−7/3 <M0 < 0; since vertical distance is a smoothly increasing function of volume
flux, we then have that Zm <ZM <Zn.

Figure 17 and equation (A 36) show the singular behaviour in the limit as
M0 ↗ 0: from the virtual source, an infinitesimally lazy plume contracts from
infinite to infinitesimal width and accelerates from zero to unboundedly large velocity
in infinitesimal distance. This reflects the unphysicality of the virtual source. The
behaviour as M0 → −2−7/3 is possibly easier to understand: in this limit the plume
only exists within an infinitesimal range of Q values around 1/4, so Qm and QM both
approach 1/4; Bm → ∞ since the plume has infinite width at its source; and the heights
Zm and ZM both approach zero. However, a small deviation from the critical value of
M0 leads to a large decrease in minimum half-width and large increases in Zm and ZM .
It is notable from figure 17(b) that both Zm and ZM increase with increasing laziness
(decreasing M0) until very close to the critical value −2−7/3 ≈ −0.1984: the maximum
of Zm is when M0 ≈ −0.1961, while the maximum of ZM is when M0 ≈ −0.1919.

Asymptotic formulae for volume flux, height and half-width at the point of
minimum width are as follows.
(a) Small negative M0. As M0 ↗ 0:

Qm ∼ 2|M0|3/2 + 4|M0|3 + 20|M0|9/2 + O(|M0|6), (A 38)

Zm ∼ 21/3|M0|2 + C3 |M0|7/2 +
216/3 41

45
|M0|5 + O

(
|M0|13/2

)
(A 39)

where C3 =
210/3 5

21
+

211/2

7
√

3

∫ 3/2

1

t−1/2(t − 1)−1/3 dt ≈ 5.638,

Bm ∼ 27/3

(
|M0|2 +

16

3
|M0|7/2 +

368

9
|M0|5 + O

(
|M0|13/2

))
. (A 40)

Terms at O(|M0|7/2) and above in (A 39) include both global and local contributions,
the latter arising from terms at O(|M0|3) and above in the upper limit of
integration Qm.
(b) M0 close to critical. As M0 ↘ −2−7/3, in terms of the variable Md defined in
(A 19):

Qm ∼ 1

4
− 21/3 3Md + 214/3 3M2

d − 3200M3
d + O

(
M4

d

)
, (A 41)

Zm ∼ 32/3
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+
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M
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, (A 42)

Bm ∼ 3−1/3

(
2−22/9M

−1/3
d − 226/9

3
M

2/3
d +

229/9 23

9
M

5/3
d + O

(
M

8/3
d
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. (A 43)

where C1 is defined in (A 17). Terms at O(M2/3
d ) and O(M2/3+n

d ) (n= 1, 2, . . .) include
local contributions arising from terms at O(Md) and above in the upper limit of
integration Qm, with considerably larger coefficients than the global contributions
at the respective orders. In particular, the term −21/3 3Md in the expansion for Qm

gives rise to a corresponding negative local contribution to Zm at O(M2/3
d ), 12 times

greater than the global contribution at that order; it is this local contribution which
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is responsible for the maximum in Zm occurring at such a small value of Md (i.e. with
M0 close to −2−7/3).

A.4 Strongly forced descending plumes: minimum velocity

Similarly to the case of maximum velocity for lazy rising plumes (§ A.3 above), we
find that the minimum velocity

Wm =

{
1 −

(
M0

2−7/3

)−3/2
}1/3

(A 44)

for descending plumes occurs where the volume flux takes the value

QM = (2M0)
3/2. (A 45)

Since QM > 1/4 for M0 > 2−7/3, the minimum of velocity occurs at a greater depth
below the source than the point of zero buoyancy.

For near-critical forcing, we use the notation

MD = M0 − 2−7/3. (A 46)

The case of forcing just above critical is important because of the effect of low
velocities on the distance travelled by a plume: as M0 ↘ 2−7/3,

Wm ∼ 31/3 24/9 M
1/3
D + O

(
M

4/3
D

)
, (A 47)

with the 1/3 power of MD indicating a sharp rise in Wm as M0 increases from the
critical value.

A.5 Descending plumes: far-field asymptotics

For strongly forced plumes and all cool plumes,

M ∼
(

Q − 1

8
− 1

64
Q−1 +

(
M3

0

3
− 5

1536

)
Q−2 + O(Q−3)

)
as Q → ∞. (A 48)

As Z → ∞,

Q ∼ Z − 1

8
lnZ + O(1), (A 49)

M ∼ Z − 1

8
lnZ + O(1), (A 50)

B ∼ Z − 1

8
lnZ + O(1), (A 51)

W ∼ 1 − 1

8
Z−1 − 1

64
Z−2 lnZ + O(Z−2). (A 52)

The O(1) terms in (A 49)–(A 51) and the O(Z−2) term in (A 52) arise from a region
within distance Z ∼ O(1) from the source, and are dependent on the source condition,
i.e. the value of M0. Thus plumes with different degrees of forcing or laziness at their
source will differ in their volume flux, momentum flux and half-width by constant
amounts in the far field.

A.6 Strongly forced descending plumes: depth of zero buoyancy

The notations (A 46), (A 17) and (A 18) are used in the formulae below, which are
again obtained using the methods described in § A.2.
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(a) M0 above, but close to, critical. As M0 ↘ 2−7/3:

Zn ∼ 2−8/3(C2 + 1) − 2−41/1837/6C1 M
1/6
D + 2−19/93−1/3 M

2/3
D

+
2−1/3 3

5
MD − 21/1831/6 5

7
C1M

7/6
D + O

(
M

5/3
D

)
. (A 53)

The leading-order (constant) term and terms of order M n
D (n= 1, 2, . . .) are global

contributions, while the terms at orders M
1/6
D and M

(1+3n)/6
D (n= 1, 2, . . .) are local

contributions from the region where 1/4 − Q =O(M1/2
D ) at the end of the integration

range; the latter terms are similar to the expansion (A 21) for Zn for rising plumes with
near-critical forcing (in which all terms are local, since the length of the integration
range approaches zero as M0 → −2−7/3). These local contributions relate to the
distance travelled at low velocity close to the zero-buoyancy point for near-critically
forced plumes.
(b) Large positive M0. As M0 → ∞:

Zn ∼ 1

32
M−1

0 +
7

213 15
M−4

0 + O
(
M−7

0

)
. (A 54)

Note the similarity to the formula (A 31) for rising plumes; the same comments apply
as in § A.2(d).

A.7 Warm weakly forced descending plumes: total distance travelled

We again use the notations (A 46), (A 17) and (A 18).
(a) Small M0. As M0 ↘ 0:

Zf ∼ 2M2
0 +

211/2 31/2 C1

7
M

7/2
0 + O

(
M5

0

)
. (A 55)

The upper limit of integration in (4.2) is O(M3/2
0 ) (as given by (A 24)), and the

integrand is O(M1/2
0 ).

(b) M0 below, but close to, critical. As M0 ↗ 2−7/3:

Zf ∼ 2−8/3(C2 + 1) − 2−23/18 32/3C1|MD|1/6 − 2−1/3 3

5
|MD|

+
219/18 5C1

31/3 7
|MD|7/6 + O(|MD|2) (A 56)

Note the similarities to the expansion (A 53) for plumes just on the strong side of
critical forcing. The analysis in terms of global and local contributions is similar to
that case, except that the upper limit of integration here is Qf rather than 1/4 (but
with Qf close to 1/4 as given by (A 20)).

A.8 Descending plumes: minimum width

Equations (5.1) and (5.2) give the volume flux Qm and plume half-width Bm at the
neck, and the distance from the virtual source to the neck is

Zm =

∫ Qm

Q0

Q

M
dQ. (A 57)

(a) Large negative M0. As M0 → −∞:

Qm ∼ 21/3|M0| +
1

6
+

2−7/3

9
|M0|−1 +

2−8/3

81
|M0|−2 + O(|M0|−4), (A 58)
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Zm ∼ 2−4/3(2 − C1) |M0| +
1

24

(
21/3 + C4(2)

)
+

19

1152
|M0|−1 + O(|M0|−2), (A 59)

Bm ∼ 22/3|M0| + 2−5/3 +
1

24
|M0|−1 + O(|M0|−2), (A 60)

where C1 is given by (A 17) and

C4(k) =

∫ k

1

t−2/3(t − 1)−1/3 dt (A 61)

with C4(2) ≈ 1.2290. There are local contributions to the integral for Zm at O(1) and
higher orders due to the terms in the upper limit of integration Qm at these orders.
(b) Small (positive or negative) M0. As M0 → 0:

Qm ∼ 1

2
− 8M3

0 − 256M6
0 + O

(
M9

0

)
(A 62)

Zm ∼
(

2−7/3 +
1

8
C4

(
4

3

))
+

220/323

15
M6

0 + O
(
M9

0

)
, (A 63)

Bm ∼ 2−1/3 − 214/3

3
M3

0 − 226/3 5

9
M6

0 + O
(
M9

0

)
, (A 64)

with C4(4/3) ≈ 0.6662. At O(M3
0 ) in the integral for Zm there is exact cancellation

between global and local contributions: as M0 increases above zero, the plume
temperatures at the source and the neck move towards the temperature of zero
buoyancy; thus buoyancy forces are smaller throughout its trajectory from source to
neck, leading to smaller velocity, less entrainment, and hence an increase in Zm with
M0 in the global contribution; but this is balanced by a decrease in Zm in the local
contribution from the upper limit of integration, due to the neck occurring at a lower
value of volume flux when M0 is greater.
(c) Critically forced plumes. For M0 = Mc:

Qm =
1 +

√
5

8
≈ 0.4045, (A 65)

Zm = 2−13/3(
√

5 + 1)5/3 +
1

8

∫ (
√

5−1)/3

0

t−2/3(1 + t)−1/3 dt ≈ 0.6219, (A 66)

Bm = 2−10/3(
√

5 + 1)5/3 ≈ 0.7024. (A 67)

(d) Strongly forced plumes. The above Zm-values are measured from finite-temperature
sources, so there is no meaningful comparison with distances from the infinite-
temperature sources for strongly forced plumes. However, the volume flux and width
at the neck vary smoothly through the critical value M0 = 2−7/3. At M0 = 2−2/3/3, the
greatest value of M0 for which a neck exists, we find Qm = 1/3 and Bm =2/3, which
are the minimum values of volume flux and half-width at a neck for any descending
plumes.

REFERENCES

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Bloomfield, L. J. & Kerr, R. C. 1998 Turbulent fountains in a stratified fluid. J. Fluid Mech. 358,
335–356.

Bloomfield, L. J. & Kerr, R. C. 2000 A theoretical model of a turbulent fountain. J. Fluid Mech.
424, 197–216.



Warm discharges into cold fresh water. Part 1 271

Caulfield, C.-C. P. & Woods, A. W. 1995 Plumes with non-monotonic mixing behaviour. Geophys.
Astrophys. Fluid Dyn. 79, 173–199.

Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and
Coastal Waters. Academic.

Foster, T. D. 1972 An analysis of the cabbeling instability in sea water. J. Phys. Oceanogr. 2,
294–301.

Gu, R. & Stefan, H. G. 1988 Analysis of turbulent buoyant jet in density-stratified water. J. Environ.
Engng ASCE 114, 878–897.

Gu, R. & Stefan, H. G. 1993 Submerged warm water jet discharge in an ice-covered reservoir or
lake. Cold Regions Sci. Technol. 21, 151–168.

Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.

Hoglund, B. & Spigarelli, S. A. 1972 Studies of the sinking plume phenomenon. In Proc. 15th
Conf. Great Lakes Res, pp. 614–624. International Association of Great Lakes Research.

Hunt, G. R. & Kaye, N. B. 2005 Lazy plumes. J. Fluid Mech. 533, 329–338.

Lee, S.-L. & Emmons, H. W. 1961 A study of natural convection above a line fire. J. Fluid Mech.
11, 353–368.

Macqueen, J. F. 1979 Turbulence and cooling water discharges from power stations. In Mathematical
Modelling of Turbulent Diffusion in the Environment (ed. C. J. Harris), pp. 379–437.

Marmoush, Y. R., Smith, A. A. & Hamblin, P. F. 1984 Pilot experiments on thermal bar in lock
exchange flow. J. Energy Engng 110, 215–227.

Moore, D. R. & Weiss, N. O. 1973 Nonlinear penetrative convection. J. Fluid Mech. 61, 553–581.

Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151–163.

Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from
maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–23.

Oosthuizen, P. H. and Paul, J. T. 1996 A numerical study of the steady state freezing of water in
an open rectangular cavity. Intl J. Numer. Meth. Heat Fluid Flow 6, 3–16.

Rouse, H., Yih, C. S., & Humphreys, H. W. 1952 Gravitational convection from a boundary source.
Tellus 4, 201–210.

Turner, J. S. 1962 The ‘starting plume’ in neutral surroundings. J. Fluid Mech. 13, 356–368.

Turner, J. S. 1966 Jets and plumes with negative and reversing buoyancy. J. Fluid Mech. 26,
779–792.

Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.

Turner, J. S. 1986 Turbulent entrainment: The development of the entrainment assumption, and
its application to geophysical flows. J. Fluid Mech. 173, 431–471.

Turner, J. S. & Campbell, I. H. 1987 Temperature, density and buoyancy fluxes in ‘black smoker’
plumes, and the criterion for buoyancy reversal. Earth Planet. Sci. Lett. 86, 85–92.
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